In this tutorial we will be implementing a 2-hidden layers fully connected neural network (multilayer perceptron)
In this example we are using some of TensorFlow higher-level wrapper classes (tf.estimators, tf.layers, tf.metrics, …).
- tf.estimators: Estimator class to train and evaluate TensorFlow models.
- tf.layers: This library provides a set of high-level neural networks layers.
- tf.metrics: Contain performace evaluation-related metrics.
import tensorflow as tf
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
print('Test shape:',mnist.test.images.shape)
print('Train shape:',mnist.train.images.shape)
Extracting /tmp/data/train-images-idx3-ubyte.gz
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
Test shape: (10000, 784)
Train shape: (55000, 784)
# Parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
display_step = 1
# Network Parameters
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 256 # 2nd layer number of features
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
Building our tensorflow Graph
# Defining our Placeholder for the images & labels
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
# Defining multi-layer perceptron model
def multilayer_perceptron(x, weights, biases):
print( 'x:', x.get_shape(), 'W1:', weights['h1'].get_shape(), 'b1:', biases['b1'].get_shape())
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) #(x*weights['h1']) + biases['b1']
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with RELU activation
print( 'layer_1:', layer_1.get_shape(), 'W2:', weights['h2'].get_shape(), 'b2:', biases['b2'].get_shape())
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) # (layer_1 * weights['h2']) + biases['b2']
layer_2 = tf.nn.relu(layer_2)
# Output layer with linear activation
print( 'layer_2:', layer_2.get_shape(), 'W3:', weights['out'].get_shape(), 'b3:', biases['out'].get_shape())
out_layer = tf.matmul(layer_2, weights['out']) + biases['out'] # (layer_2 * weights['out']) + biases['out']
print('out_layer:',out_layer.get_shape())
return out_layer
# Initialize weights and construct the model
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), #784x256
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), #256x256
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes])) #256x10
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])), #256x1
'b2': tf.Variable(tf.random_normal([n_hidden_2])), #256x1
'out': tf.Variable(tf.random_normal([n_classes])) #10x1
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
x: (?, 784) W1: (784, 256) b1: (256,)
layer_1: (?, 256) W2: (256, 256) b2: (256,)
layer_2: (?, 256) W3: (256, 10) b3: (10,)
out_layer: (?, 10)
# Define Loss function, and Optimizer
# Cross entropy loss function
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
# On this case we choose the AdamOptimizer
# Compute individual adaptive learning rates for different parameters from estimates of first and second moments of the gradients
# Appropriate for non-stationary objectives & for problems with very noisy/or sparse gradient, Invariant to diagonal rescale of the gradients
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
Launch graph
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print ("Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(avg_cost))
print("Optimization Finished!")
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# To keep sizes compatible with model
print ("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
Epoch: 0001 cost= 162.937369055
Epoch: 0002 cost= 37.577835445
Epoch: 0003 cost= 23.930785534
Epoch: 0004 cost= 16.995655808
Epoch: 0005 cost= 12.291253413
Epoch: 0006 cost= 9.056166938
Epoch: 0007 cost= 6.771846190
Epoch: 0008 cost= 5.048019525
Epoch: 0009 cost= 3.678227040
Epoch: 0010 cost= 2.795690129
Epoch: 0011 cost= 2.088872750
Epoch: 0012 cost= 1.596066990
Epoch: 0013 cost= 1.106095413
Epoch: 0014 cost= 0.821402427
Epoch: 0015 cost= 0.775459428
Optimization Finished!
Accuracy: 0.9409
As we see that the accuracy is increased from 91.4% to 94.09% using this network. In the next post, we shall learn about Restricted Boltzmann Machine algorithm and it’s implementation using TensorFlow on the same dataset.